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ABSTRACT 3to08 
An approximate theory is developed to find out whether a star, moving initially on the plane of sym- 

metry of a galaxy, escapes during the collision with another galaxy of small dimensions. The escaping 
stars are inside an ellipse on the plane of symmetry of the galaxy. Numerical calculations in a Bottlinger 
model of a galaxy give results of the same order of magnitude. The total amount of the escaping matter 
is only a few per cent of the total mass of the galaxy, if the collision velocity is of the order of 2000 
km/sec. The behavior of the escaping and non-escaping stars is described. The escaping stars do not 
follow the colliding galaxy and do not form a bridge or link between the two galaxies. / 

I. ESCAPLWG STARS 

The purpose of this paper is to consider the effects of the collision of two galaxies on 
stars moving initially on the plane of symmetry of one galaxy. 

If we assume a relative velocity of collision of about 2000 h i / sec  (Spitzer and 
Baade 1951), the collision lasts about lo7 years. During that time the perturbations due 
to the ellipticity of the first galaxy are insignificant for stellar orbits close to its plane of 
symmetry (Contopoulos and Bozis 1962; hereafter referred to as “Paper I”). Therefore 
in order to study approximately the effects of the collision on these orbits we may use a 
spherical model of a galaxy. The colliding galaxy is also assumed to be spherical but of 
small dimensions. We will see that, if its diameter is less than 2 kpc, its effects are es- 
sentially the same as those of a point mass. In  the numerical examples below the mass of 
both galaxies is assumed to be about 10“ Ma, and the radius of the first galaxy is taken 
10 kpc. 

In  Paper I it has been proved that, if two such galaxies collide with a relative velocity 
z’ = 2000 h / s e c ,  their relative motion may be considered as uniform; in fact the change 
of velocity is of the order of 30 km/sec and the change of the direction of the velocity 
is less than 5”. 

Further, during the collision, a star moving in a circular orbit on the plane of syn- 
metry of the first galaxy 0 with radius 8 kpc describes only about 1/20 of a revolution, 
Le., about 18”; therefore, we may consider, in a rough approximation, the unperturbed 
orbit of S to be a straight line, x’ = xo’, perpendicular to  the axis x’, which is directed 
away from the center 0 (Fig. l ) ,  and parallel to the axis y’. Under these assumptions the 
perturbation may be considered as a two-body encounter that lasts as long as the 
collision itself. 

The galaxy 0’ is assumed to move along the axis z’ with uniform velocity e, reaching 
the point 0 1  on the plane xOy a t  t = to. The initial velocity of the star is i&; if the per- 
turbing galaxy was not present, S would reach the axis x’ at t = t ~ .  

The velocities z! and zC are of the order of 2000 km/sec and 200 km/sec, respectively; 
therefore, during 10’ years the galaxy 0’ moves approximately from z’ = 10 kpc (initial 
position) to z’ = - 10 kpc (final position), whiles moves about 2 kpc along a parallel to the 
y’-axis. The influence of 0‘ on S when the distance 00’ is larger than 10 kpc is very small. 
In  fact, as we will see below, the escaping stars are inside an ellipse whose dimensions are 
of the order of 4 kpc. Therefore, their minimum distance from 0’ is about 2 kpc or less. 
When a point comes from infinity to a distance of 10 kpc the relative velocity changes 
only by about 1 per cent and the change of its direction is of the order of 2 per cent of 
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the angle between the asymptotes. I n  fact, if ztrn is the relative velocity before the en- 
counter and v the relative velocity a t  a distance r froin 0’, then 

hence 

and for r = 10 kpc, zlrn = 2000 kiq’sec, and wz = lo1’ Mo, 
A v  = 2 2  km/sec. 

Y’ 

FIG. 1.--A galaxy 0’ of mass nz is moving downward along the axis z’ toward the point 01 on the plane 
of symmetry of the galaxy 0, of mass 31. The axis Ox is parallel to the projection Old’ of Old on the 
plane of symmetry. The distances of 0’ from 0, 01, and S are d*, d ,  and D, respectively. 

The angle 2+ between the initial and final velocities is given by tan + = p / q ,  where 
x12/p2 - yI2/q2 = 1 is the equation of the relative orbit. As q is of the order of 2 kpc, 
and p = Gm/nm2 N 0.1 kpc, we have p / q  2 0.05. 

The tangent a t  a point (XI, yl) whose distance from the focus is 10 kpc makes an 
angle +’ with the axis yl, where 

tan +’ = tan J.  ,/(I - $1, 
and [xI - d(p2 + q2)12 + yl? = JOO: 

Then the deviation (+ - +’) 1s given by 

Hence 

‘-JI’=O. 0 0 5 q 2 ,  
$ 
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and for q = 2, this is 2 per cent. Therefore we may consider the initial and final relative 
velocities of S lvith respect to 0 as being equal to the corresponding velocities in a two- 
body encounter at infinite distances. 

The initial relative velocity of the star S with respect to the galaxy 0’ is Go = Zic - G; 
the corresponding final velocity 50’ is equal to $0 in measure but not in direction. The 
final velocity of S with respect to the galaxy 0 is i$ = fJ + 5; if vf is greater than the 
velocity of escape tie, the star escapes from the galaxy 0. 

I n  what follows we use a frame of reference where 0’ is at rest. The galaxy 0 is moving 
with respect to 0’ with velocity -$ along the axis z’ that makes an angle e with the 
plane xOy (Fig. 1). The projection of z’ on the plane xOy makes an angle 0 with OI~’ ,  
and p is the angle z’Oly’. Then 

cos cp = cos e cos 6 . (1) 

At  the initial time t we have 

and 

If w is the angle between 60 and -$, we have 

and 

s i n o  s i n p  sin(p-w) -- - 
21, 11 0 V 

zl02 = v 2  + ztc2 + 2 at v, cos p . 
The corresponding angle between GO‘ and -$ is w‘, and the angle between TO and 5: 

is 2#, which is approximately equal to the angle between the asymptotes of the hyper- 
bolic orbit. Therefore 

G m  
tan +=- 

q 2’02’ 

where q is the impact parameter. 
The impact parameter is found as follows. Let SS’ be parallel to the axis x’ and S’Q’ 

parallel to Go, O‘Q and O’Q‘ perpendicular to SQ and S’Q‘, respectively; S’Q’ is on the 
plane S’OIO’ and QQ’ is perpendicular to SQ and S’Q’. The angle between the planes 
QQ‘S‘ and O’QlS‘ is p, and the angle between the planes QO‘S and Q‘O’S‘ is v. The angle 
Q‘S‘Ol is equal to p - o, therefore 

where 
yo’= V c ( f o - h )  

is the y’ coordinate of S at t = to. The term q’ is positive if .yo’ < 0, and negative if 
yo’ > 0. Further 

S’S=0102= xo’, Q‘Q= xO’sin6, and q 2 =  qt2+xorZsin26 -2q‘xotsin6 COS p .  (9(  

From the trihedral angle S’Q’SOI we find 

and 
cos8 = sin (p - w)cos I 

sin6 cos p =  -cos(p-u)cos I 
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where I is the angle between the planes y ‘ 0 d  and y’Olx‘, hence 

cos e sin0 cos I = cot y tan0 = 
sin v . 

- 2xo’yO’ sin ( y - w)cos ( y - w )cos I . 
A star escapes if 

v p =  v2+ vo2- 2 v v o  cos w’ L v ,2 .  

This is possible only if v + 80 2 v,. Then we can set 

(14) 

because vc < v,. Therefore 0 < w ~ ’  <_ ir, and if a star escapes we have 

cos 0’ I: cos wo’ . (16) 

The angle w’ can be found from the trihedral angle Sfioz‘((-6); 
c o ~ w ’ = c 0 ~ 2 ~ c o s w + s i n  2fisin WCOS(S-V) ,  (17) 

where (T - v) is the angle between the plane S,?joijo’ (i.e., the plane O’QS of the relative 
orbit) and the plane Sf?‘0(-6) (which is parallel to the plane O’Q’S’); thus (S - v) is 
the complement of the angle QO’Q’, and 

CoS’=~[ -yo’ s in (v -w)+xO’cos (y -w)cos  I ] .  (18) 
q’-zo’sin6 cosv = -- 

4 
If we use relations (6) and (17) in inequality (16) we get 

{ X O ’ ~ [  1 -sin2(cp - w)cos2 I ]  + yof2 sin2(y - w )  - 2x0’yO’ sin(y - w)cos(y - w)cosI} 

(COS w - COS w o ’ )  -k- sin w sin ( y - w  ) yo’-- sin w cos ( y - w  ) cos Ix0’ (19) 
2Gm 2Gm 
v O2 2’ o2 

G2m2 
Z ‘ O  

5 ,(cos w +cos wo’) , 

i.e., the escaping stars are inside the ellipse 

1 - sin2( y - w )  cos2 I )  + ( yo’ - yc’) sin2(y - w )  

G2m2 sin2 wg’ (20) 
-2z~’(yo’-  y,’)sin(y-w)cos(y-w) cos I =  __ 

v 0 4 (  cos w - cos a”’) 2 ’  

whose center is (XO’ = 0, y:), where 

2Gm v c  
( Z’,2 - v c 2 )  Z’O 

(21) - -- - yc ’=  - Gm sin w 
zO2 sin ( y - w )  (cos w - cos a,,‘) 

The axes of this ellipse form an  angle y with the axes z’ and y‘, where 

- t an (  y - w)cose sin0 
sin cp 

tan y =  - tan(y-w)cos  I =  (22) 
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For 0 < 0 < T, the angle y is positive (measured counterclockwise) if cp - w > 7 ~ / 2  
and negative if cp - w < ~ / 2 .  For -T < 0 <: 0, i.e., if the projection of z‘ on the plane 
x’Oly’ is on the negative side of the axis d, the angle y is positive if cp - w < x/2 and 
negative if cp - w > r / 2 .  For 0 = 0 or 0 = 7, the angle y = 0. 

If e = ~ / 2  then = ~ / 2 ,  I = e, and equations (20)-(22) become 

xo’a( 1 - cos2 w cos2 e )  + cos2 w ( yo’ - ye’) - 2x0 ’ (  yo’- yc)sin w cos w cose 
(23) - G2m2 sin2 WO’ - 

2104 ( cos 0 - cos 00’ ) e ’ 

4 . . . . . . . . . . .  
6 . . . . . . . . . . .  
8 . . . . . . . . . . .  

10. .  . . . . . . . . .  

and 

1.41 1.42 6 -0.7 6.22 
1.94 1.95 12 -1.2 6.55 
2.41 2.42 18 -1.6 6.19 
2.80 2.81 25 -1.9 5.74 

Gm tan w 
2’02(COS w -cos wo‘) ’ 

y,’= - 

tan y =  -cot w cose . 
From equation (20) we find easily the area of the ellipse 

n-Qrn2 sin2 wo‘ 

oO4(c0s w-cosw0’)2sin(cp-w)sin I ’  E = ra,’a,’ = 

T.4BLE 1 

r 1 a, 1 ay ( E (  sc’ 1 0  (degrees) OrPC) kpc)  (IrPC) (Irpc)t OrPC) 

G2m2 sin2 00’ 
xo’2 + ( yo’ - y,‘) sin2( cp - w ) = 

u04(  cos w - cos wo‘)2’ 

(26) 

The semi-axes of the ellipse are then 

(28) 
Gm sin wo’ - 2Gm sin 00’ sin (cp - w ) - a, = 

Z>o’( cos w -cos %’) ( zie2-- vC2)sin p ’ 
and 

(29) 
- 2Gm sin WO’ - Gm sin 00‘ 

Z J ~ ~ ( C O S  w-cos wo’)sin ( p - w )  
ay = 

If ‘i+ m, then a,-+Oand a,-+O. 

( o e 2 -  vC2)sin cp’ 

The ratio of the axes is 

a,/a,=sin(cp-w) = o sin p / v o ,  (30)  

and the area of the ellipse is 
hG?m2 sin2 00’ sin ( c p  - w )  

( ne2 - o c 2 ) 2  sin2 cp E = ra,ay = (31) 

I Table 1 gives the values of a,, a,, E, y.), and w for the model considered in Section 11 
with e = r / 2 ,  (a = ~ / 2 ,  v = 2000 km/sec = 2.0154 kpc/l06 years, and different mini- I 

mum distances r = d ( a 2  + p2) of the colliding galaxy from the center. 
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If the effective radius of the galaxy RG is about 10 kpc, the above area is between 2 
per cent (for r = 4 kpc) and 8 per cent (for r = 10 kpc) of the total area. 

The proportion of the escaping stars is roughly Ep/rR&i2 where 6 is the mean density 
of the galaxy and p is the mean density in the region of escape. 

Table 2 gives the values of 'p, E, ye', w for (e = 75", e = O"), (e = 45", e = 0") and 
( e  = 45", e = 45"). 

The value of y in the first two cases is zero, and in the last case varies between 
-39?8 and -39". 

It is seen that the values of E and y.l in all three cases are quite near the corresponding 
values of Table 1. Therefore, the amount of escaping matter from the plane of symmetry 
of a galaxy does not depend very much on the direction of the collision. 

We do not give the values of E,  etc., for r < 4 because near the center the assumption 
of a binary collision between the star and the approaching galaxy is not even approxi- 
mately satisfied. 

If the diameter of the colliding galaxy is 2 kpc (or less), its cross-section is small, in 
general, in comparison with the area E of the region of escape; therefore, the amount 
of escaping matter is essentially the same as in the case of a point mass. If the diameter 
is larger than 2 kpc, the amount of escaping matter will be smaller. 

TABLE 2 

I 

7 
11 
17 
23 

I 

(kpc) 

4 .  . . . . . . . . .  
6 .  . . . . . . . . .  
8.  . . . . . . . . .  

10. . . . . . . . . .  

-0.7 4.10 7 -0.7 ~ 5.12 

-1.8 3.80 28 -1.9 1 4.74 

-1.1 4.29 13 -1.2 5.37 
-1.5 4.08 20 -1.5 5.09 

e = 7 j " ,  @ = O D ,  q = i S "  

I 
E 1 YC' 1 w 

(kpcJ2 (kpc) (degrees) 
_ _ _ ~ _ _  

6 
11 

23 
17 

-0.7 5.85 
-1 .2  6.15 

-1.9 5.41 
-1.6 5.82 

11. NUMERICAL CALCULATIOKS 

In order to calculate numerically the orbits of stars during the collision of two galaxies 
we have chosen a simple model for the first galaxy, in which the forces per unit mass are 
given by Bottlinger's fonnula 

This formula has been applied by Lohniann (1953; 1954a, b) to our Galaxy, as well as 
to M31 and M33, and by Kerr and de Vaucouleurs (1956) to the Large Magellanic 
Cloud. It is discussed, together with other models, by de Vaucouleurs (1959) and Perek 
(1962). 

The values of a and b were chosen to represent approximately the force function F 
given by Schmidt (1956) for the plane of symmetry of our Galaxy, namely, 

u = 0.0055 ( l o 6  years)-2, b = 0.012 k p P .  

The corresponding potential function is 

where k = b-*I3 and lTm = 0. 
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In this model the mass of the Galaxy is 

M = Q  -1.02 x 1O”Mo. bG- 
The circular velocity is 

and the escape velocity is 
c c =  d ( F f ) ,  

z e =  d ( 2 U ) .  

~~~ ~ ~ 

4 . . . . . . . . .  0.2231 0.4294 14.. . . . . . . .  1 0.1783 

;;: : : : : : : : : ~ 

. . . . . . . . .  ,3750 16 . . . . . . . .  _ ,  ,1676 1 1  .2997 20.. . . . . . .  . /  0.1506 
0.2748 

6 
8 . . . . . . . . .  .2220 ,3321 ! 18. .  . . . . . .  - 1  ,1584 

0.1909 

Table 3 gives the values of ztc and for different distances r from the center in the 
above held. 

XOK we consider the following situation (Fig. 1): A point mass O’(m) goes through a 
spherical galaxy O(M),  represented by the force function (32). This force function is as- 
sumed to be stationary; this is justified if the colliding galaxy does not come very close 

TABLE 3 

0.2549 
.2388 
.2253 

0.2138 

to the center of the galaxy 0, because then the amount of escaping matter is rather 
small. In fact the density corresponding to the force function (32) is 

3a  
= 4&( 1 + b r 3 ) 2 ’  

and the mean density is 
3a  ’ = 47i-G bRc3 ’ 

so that if me take a mean radius of the galaxy Rc = 10 kpc, then the proportion of the 
escaping stars is 

E D  0 . 0 s  A- ,aG?;-( 1 + 0 .012~3)2  
for r = 10 kpc this is about 0.6 per cent while for 7 = 1 kpc this is 8 per cent. 

The motion of 0’ is assumed to be uniform along the line 0’01, where Ol(a, 0) lies on 
the plane nOy. The plane . d z  is taken parallel to the direction 0’01 and e is the angle 
between this line and the plane d y .  The coordinates of the star S are -T, y ,  z ,  and d, d*, 
D are the distances of 0‘ from 01, 0, and S, respectively. 

The unperturbed orbit of S is, in general, a rosette on the plane TOY. I n  this paper, 
however, we consider only the case of circular orbits around 0. 

The perturbation acting on the star is equal to the acceleration of S due to the galaxy 
0‘ minus the acceleration of the galaxy 0, taken as a whole. As the attraction between 
0 and 0’ is mF(d*), the acceleration of 0 is (m/M)F(d*).  Thus the equations of motion 
of S are 
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and 
-= d z z  - F ( r * ) F + F ( d s i n e - - z )  z Gm - F ( d * ) g F ,  m d sine 
dtz  

where 
r * =  d ( 2 2 + y 2 + z Z ) ,  

d * =  d[ ( a + d  cose)2+P2+ ( d  s ine )2 ] ,  (41) 

D = [ ( a + d cose - x) e+ ( 6  - y ) * +  ( d  sine - z ) ' ] ,  (42) 

( 4 3 )  

and 
d = do- p t  . 

The numerical values used are the following: m/M = 1, MG = a/b, v = 2000 km/ 
sec = 2.0454 kpc/106 years, do = 100 kpc, a = 8 kpc, 6 = 0, and e = 90" (case A), or 

FIG. 2.-The position ( r ,  g in polar coordinates) of escaping (open circles) and non-escaping (solid 
circles) stars in their unperturbed orbits when the colliding galaxy is going through the point Ol(a  = 
8 kpc, p = 0). In  case A, e = 90"; in case B, e = 45". 

e = $5" (case B). The initial conditions for t = 0 were taken in such a way that the star, 
moving in the unperturbed circular orbit, would reach an axis forming an angle g -with 
the positive x-axis (g is positive if measured counterclockwise), when the collidirig galaxy 
reaches the point O1 (a, p), namely, a t  about t = 48.89 X lo6 years. 

The greatest part of the calculations was made with the IBM 7090 computer of SASA'S 
Institute for Space Studies, Kew York. The Runge-Rutta integration method i: us used 
with a step 0.1 (lo6 years) and the orbits were calculated for 200 X lo6 years. At t = 
200 X lo6 years the colliding galaxy is a t  a distance of about 300 kpc from the galaxy 0 
and its influence is then negligible. I n  some cases, when the stars escaped rather fast from 
the galaxy 0, the calculations were stopped earlier. 

The initial z coordinates and velocities were all assumed to be zero. Figure 2.4 
shows the positions that the stars would have in case A (e = 90°) a t  t = 48.89 X lo7 
years (when the colliding galaxy reaches the point 01), if there was no perturbation. The 
polar coordinates of these positions are ( Y ,  6); therefore the initial polar coordinates, for 
t = 0, are 

and 
r o =  r 

go = g - 48.89 3 x 5 T 2 9 5  7 795 
r 
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The dots represent stars that are not escaping. The small circles represent escaping 

stars. The region of escaping stars is approximately a circle of diameter 5 kpc. From 
Table 1 n e  see that the ellipse of escaping stars for Y = 4 (a' + a?) = 8 kpc is very nearly 
a circle of diameter 4.8 kpc; the agreement with the calculations is very good in this case. 

The center of the circle in Figure 2-4 is not at x,1 = 0, as it was expected theoreti- 
cally, but at about xc) = 1 kpc, Le., further out than the point O1. On the other hand, the 
y' coordinate of the center is about y,1 = - 1.5 kpc, Le., very close to the calculatedvalue. 
Therefore, the only discrepancy between theory and calculations is that the actual region 
of escape is further out than expected; this is due, of course, to the fact that the unper- 
turbed orbits are curved and not straight lines as they were assumed in Section I. The 
only consequence of this effect is that the region of escape actually includes less dense 
areas, therefore, the amount of escaping matter is smaller. 

In case B (e = 45") the calculated orbits are marked in Figure 2B. The region of 
escape is approximately an ellipse of dimensions 2a = 8 kpc, 2b = 5 kpc, and the area 
E = 31 kpc2. This is bigger than expected on the basis of the simple theory developed in 
Section I. However, even in this case the area E is only 10 per cent of the effective area 
in the plane of symmetry of the galaxy 0, and as it includes mainly the outer parts of 
the galaxy the mass of the escaping matter is less than 2 per cent of the total matter 
near the plane xOy. 

The individual orbits of stars during the collision show a number of interesting char- 
acteristics. Figures 3 and 4, copied from plots made by the SASA computer, show the 
main t?pes of orbits encountered, in the case e = 90". 

,4 common characteristic of all the orbits is that the perturbations are very small until 
the colliding galaxy goes through the galaxy 0. Cntil that moment the orbits are prac- 
tically circles on the xy-plane. After the collision the orbits may be divided into three 
types: (a) orbits of stars that remain far from the region of escape; (b)  "escaping" orbits; 
and (c) orbits of stars near the region of escape. 

If the star is far from the region of escape, its orbit is not changed much by the col- 
lision. It remains almost circular, and the z-motion is very small. Such is the case of 
orbit I ( r  = 8 kpc, g .= -60"). 

The orbits of stars inside or near the region of escape can be divided into the following 
groups (cf. Figs. 2 4  and 3.4-30): (i) stars with g 5 0" and r 2 8, or r smaller than 8, 
but g not near 0"; (ii) stars with Y < 8 and g 5 0" but g near 0"; and (iii) stars with 
g > 0". It-e discuss these groups separately. 

i) The stars with g 5 0" that are inside or near the region of escape are accelerated 
toward the positive 31'-axis as the colliding galaxy goes through the galaxy 0. If r > 8 
kpc the orbits are deflected to the left. This deflection is bigger whenever the approach 
to the colliding galaxy is closer. For example, in case I1 (r  = 9, g = 0") the star is 
ejected abruptly to the left and down, while in case I11 (r  = 11, g = -5") the star 
escapes but with smaller velocity. I n  case IV (I = 11, g = 0") the star does not escape, 
but its orbit does not differ much from the escaping orbits for t = 200 X lo6 years. Only 
the fact that its velocity is less than the escape velocity makes it sure that i t  does not 
escape, but forms a very elongated orbit around the center of the galaxy 0. 

-ill orbits near the boundary of the region of escape from (r = 11, g = 0") to (Y = 8, 
g = -25") are similar to cases 111 and IV. The y component of the final velocity is 
negative for large Y, while i t  is positive for Y near 8. 

The same general behavior is shown by the orbits with r < 8 but g not close to 0". 
For example, case V (Y = 7, g = -20") represents an escaping orbit; the star escapes 
toward the positive y direction and downward. 

ii) The orbits with Y < 8 and g near 0" show an abrupt deviation to the right. This 
is most marked in case VI (Y = 7, g = 0") when the star is ejected abruptly to the right 
and downward. 

iii) The orbits with positive g are usually not escaping. In general, the additional 
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attraction of the colliding galaxy makes the orbits more elongated. Such is the case VI1 
(r  = 8,  g = +30'), that is rather far from the region of escape. In case VI11 ( r  = 8,  
g = +-lo"), however, the deviation is so large, that the orbit reverses the sense of rota- 
tion, although the star does not escape. A large deviation, but to the right, is shown in 
case IX (r = 7, g = +.So). Finally, case X ( r  = 8, g 7 +So)  shows an abrupt reversal 
of the motion of the star and ejection toward the negative y-axis. Such a behavior, how- 
ever, is quite exceptional. 

0 

-10 -I 
10 20 -20 L -10 0 IO 20 

-20 

O X  
-20 -10 

kpc kpc 
2 2 

2 z 

0 0 

kpc -2 kPC -2 
-20 -10 0 IO 20 -20 -10 10 20 

X O x  

FIG. 3.-Characteristic cases of orbits during a collision through O,(a = 8 kpc, p = 0) n-ith e = 90': 
I ( r  = 8 kpc, g = -60'; non-escaping); I1 ( r  = 9 kpc, g = 0"; escaping); I11 ( r  = 11 kpc, g = -5"; 
escaping); IV  (Y = 11 kpc, g = 0"; non-escaping); 1' (I = 7 kpc, g = -20"; escaping); V I  ( Y  = 7 kpc, 
g = 0"; escaping); VI1 ( r  = 8 kpc, g = 4-30"; non-escaping); VI11 ( r  =,8 kpc, g = 4-10"; non-escaping); 
I X  ( r  = i kpc, g = +so; non-escaping); X ( r  = 8 kpc, g = 4-5"; escaping). 4 ,  B give the projections of 
the orbits on the xy-plane, while C, D give thc projections of some orbits on the xz-plane. 

From the above discussion we conclude that the greatest proportion of the ejected 
stars escapes toward the left (between the positive y-axis and the negative x-axis) and 
downward. The stars do not follow the colliding galaxy after the collision and they do 
not form a bridge or link between the two galaxies. 

In  case B (e = 45') the orbits are similar to those of case A, except as regards the 
z coordinate (cf. Figs. 2B and 4). 

i) The stars with r >_ 8, g 5 0" have comparatively large motions upward, as the 
colliding galaxy approaches, which are changed to downward motions later, as in case 
XI ( r  = 14, g = 0'). This is because in these cases the approaching galaxy comes rather 
close to these stars before it reaches the plane d y  a t  01. 

If r is near 8 kpc but r > 8, and g N 0" the upward motions are so fast that the stars 
eventually escape upward and to the left (case XII, r = 9, g = 0'). If r is near 8 kpc 
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but g not near 0" the upward motions are small (case XIII, r = 8, g = -25"), and 
if r < 8 kpc the stars go downward, showing only a small upward kink, as 
in case V. The downward motions in this case can be explained easily, because as the 
approaching galaxy comes from the right, it does not influence appreciably the stars to 
the left of O1 until it goes beyond the point 01 and comes rather close to them. 

ii) The stars with Y < 8 but close to 8 and P near 0" show an abrupt motion down- 
ward (case 

u 

XIV, Y = 7, g = 0"). 

-20 -10 IO 20 
O x  

FIG. 4.-Characteristic cases of orbits during a collision through O,(a = 8 kpc, 6 = 0) d t h  e = 45": 
XI  (r = 14 kpc, g =Po; escaping); XI1 (r = 9 kpc, g = 0"; escaping); XIII (I = 8 kpc, g = -25"; 
escaping); XIV ( r  = i kpc, g = 0"; escaping); X\- (I = 9 kpc, g = +lo"; non-escaping). Only the pro- 
jections on the m-plane are given. 

iii) The orbits of stars with g > 0" show all the peculiarities mentioned in case A. 
The z motions are of the form of case XV (r = 9, g = +lo") if r > 8, and of the form 
of case XIV if r < 8, but with less steep descent. 

We conclude that if a galaxy goes through the plane of symmetry of another galaxy 
a t  an angle different from 90" it causes the stars to acquire appreciable z velocities. The 
escaping stars move usually downward, but they do not follow the colliding galaxy in its 
course. 

The final conclusion of this paper is that, during a collision of two galaxies with 
rather large relative velocity, only a small fraction of matter escapes and this does not 
fomi any- bridge or link between the galaxies. Therefore the observed bridges between 
pairs of galaxies probably are not due to collisions with relative velocities of the order 
of 2000 km/sec. It is possible, however, that much slower collisions, not considered in 
this paper, may cause much larger changes in the colliding galaxies and eventually ex- 
plain the formation of bridges between them. 
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